Lots of Calculations in GR — Four vectors and four velocity — Chapter 3 21 March 2023
Susawn Larsen

3 FOUr vectors and fOUN VEIOCITY ......uueii ittt e e et e e e eaae e e e abt e e e e eareeeeeares 1
3.1 oYU T Y =T o] T PSPPSR PO PSRRI 1
3.11 The SUM OFf TWO FOUI VECLOTS ettt ettt e s e e s e e 1
3.1.2 The product of tWO fOUI VECLOIS......ccoiiieiceee e 2
3.1.3 Timelike, spacelike or NUII-VECTON ....cccuuiiee e e 2
3.14 The separation between two events in flat SPacetime .......cccceevevieeicciiee e, 2
3.1.5 Lorentz boost and the conservation of orthogonality.........cccceevviiiiiinciiiicce e, 2
3.2 Four-velocity, Four-impulse, Four-force: Definitions and useful properties.......ccccccoeecvviveeeeeeeenennns 3
3.3 Four-velocity, Four-impulse, Four-force and world-lines: ExXamples .........cccoceeeeiieeieiiieecccciiee e, 4
3.3.1 Parametrizing and four vectors of a free particle with constant velocity. ........ccccceeeecvieeennnen. 5
3.3.2 Four vectors of a free particle with constant velocity.......cccccveiiiciiiiiiciiiicce e 6
34 NON-CONSEANT VEIOCIIES ....eeiiiiiiiiieeiee ettt et st et e s bt e e sab e sabeesateesabeeesaeeas 7
341 Parametrizing and four vectors of a free particle with non-constant velocity. .........ccceee......e. 7
3.4.2 Parametrizing and four vectors of a free particle with constant acceleration...........cc............ 9
3.4.3 Charged particle in @a magnetic field. ......cceeii i 10
3.5 O DSBIVEIS. ...ttt ettt ettt ettt st e st e e bt e e s bt e e ab e e s a bt e e b et e s be e e bteeaabee s baeesabeesbeeenbeesbaeenareea 11
3.5.1 Energy of a stationary particle measured by and observer with constant velocity V ............ 12
3.5.2 Particle with fOUr-momMENTUM P ..c..ooiii et 12
3.5.3 AN ACCEIRIAtING ODSEIVET .....eiiceieeieeee e et e e e e ate e e e e abae e e enreeeeeeanes 12
354 The four-velocity of an observer in a two-dimensional flat space-time moving — Rindler
R0) o7 Lo T 1 4 TS 13
3.5.5 Observed particle outside a Spherical Symmetric star.......cccoccveeeeciieeiccie e 14
356 The four force outside @ bIack hole ........c.oocviiiiiiiini e 15
3.5.7 Can an astronaut escape a black NOIE? .......cccuviiiieciiii e 15
RETEIEINCET ..ttt ettt e b e bt e s bt e s bt e e at e e te e ke e e bt e she e sabeeab e e bt e beeeheeeaeeeneeeteeteen 16
Space-time Line-element Chapter
Three dimensional flat space-time | ds? | = —(cdt)? + dx? + dy? 3
Two-dimensional flat space-time | ds? | = —X2dT? + dX? 2,3,4
Two-dimensional flat space-time | ds? | = —dt? + dx? 3
3 Four vectors and four velocity
3.1
If
=@’ al, a? a3)=(2 0 0 1)

, 3, 4)=(-27, 0, —15, -19)

http://physicssusan.mono.net logik.susan@gmail.com



http://physicssusan.mono.net/9035/General%20Relativity%20-%20Relativity%20demystified

Lots of Calculations in GR — Four vectors and four velocity — Chapter 3 21 March 2023
Susan Larsen

3.1.2 P <The product of two four vectors

If
a =@ at, a? a*)=(2 0, 0 1
b =(®° b, b?% b3)=(G 0 3, 4
-1
_ 1
Nab - 1
1
a-b =-a’h°+a'b' +a*b*+a’*p*=10+0+0+4 =14
If
v* =2, 1, 1, -1)
w¢ =(-1, 3, 0, 1)
1
_ -1
Nab - -1
-1
v-w =v,wt=nuv*wt=-2-3-0+1=—-4
3.1.3 Y Timelike, spacelike or null-vector
If
a =@ a', a? a®=(-2 0, 0, 1)
b =@®° bt b% b3)=(G, 0 3, 4)
-1
_ 1
Nab - 1
1
a-a =—(a"?+@"H?+@®)?*+@@®?*=-4+0+0+1=-3<0i.e.timelike
b-b =-=(0b%%+BY2+ (B?»)?+ (b%?=-25+0+9 + 16 = 0i.e.null vector

3.1.4 °The separation between two events in flat spacetime
The separation (As)? between two events in flat space is described by a four-vector
E, =(1, 3, 2, 4)
E, =4, 0 -1, 1)
1

-1
nab _1

-1
(8s)? = (B9 — EQ)? — (B} — E})? — (B} — EP)? — (B} —E})? =25-9-9-9=-2>0
Which is timelike.

3.1.5 fLorentz boost and the conservation of orthogonality
In the inertial system (¢, X, ¥, Z) we have the two orthogonal four vectors
a =(@at a, a¥, a®)=(1, 0, 0, 0)
b = (bt b*, bY, b=, 1, 0, 0)
-1

1
nab 1

1
a.b =—atbt+axbx+ayby+azbz=_1+1=0
The inertial system (t', x', ', Z)is related to the system (t, X, ¥, 2) by a uniform velocity v
along the x-axis. A four vector is transformed by the Lorenz boost

ot =y(a* —va?)
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a* =y(a* —vab)
v =a¥
aZz =a?
= a = (at’, ax,, ay,, aZ,) = (Y' -Yv, 0: 0)
b =@, b, b, bF)=(-yv, v, 0, 0)
al . bl — _at,bt, + axlbxl + aylbyl + azlbzl — yzv _ yzv — 0

And we can conclude, that the orthogonality is conserved.

3.2 Four-velocity, Four-impulse, Four-force: Definitions and useful properties
The four-velocity

(7 )
\fi-o) -y

(dt dx dydz>_(t X u) = ‘_/,)_
v S \@dr dedr) T R =)=

The three-velocity:
7. (dx dy dZ)
T \dt'dt’dt

The y —factor

B 1
Y )
1-(V)
. d 1 _Zvdv(1) L g
YT dr — | dt \ 2 . ;_y
1-(V) (1-v2)
The four-impulse (also named the energy-momentum vector):
_ — b ) = (dtdxdde)_( [7)
p =mu= p ;p =m dT’dT’dT’dT - my:my
_ dt _ m _ g
Pt Bl de B .2 B
1-(V)
o
p - 2

ft =yF-v
 _dp_dpde_ .
dr dedr !

. .2 .2
! Notice: For small velocities V « 1: pt = m (1 + % (V) ) =m+ %m(V) + -+ which corresponds to the particle rest
mass plus the particle kinetic energy, hence pf is interpreted as the particle energy.
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The three-force

- _dﬁ
T dt
8The four-acceleration
a _du_( £ )
“ar e
ot _dut dtdut 5. q
T drar YTV
- dtdﬂ d - dV - - — >\ = - —\2
@ =——=y—V)=y>—-+yyV =y%4 WA =y A(1+y3(V
= v (W) =y iV =y ALy (V- AV =y (1+72(V)")
(7)° 1
=y24| 1+ — | =y%4 — | =y*4
1-(V) 1-(V)
The three-acceleration
i-v
dt

Notice the following:

—\2 —\ 2
u-u o =hugu® = nepufu® = —y? +y2(V) = —y? (1 - (V) ) =2-1
p-p =mPu-u=-m?
p-p =nepPp®=-®)+ B = -E*+ ()’ = -m’

= E =v/m?+ @)

d(u-u) ~0
" ar d d 1 d( )
dp u u-u
=1 u = j—" — - . — — —=O
4 dtu mdru Zﬁm dt .
fru =nepffut=—ful+f i=~fly+yF-yV=0
= fto=wE.V
po J4E_dEdr  dE_ .o
“dr dtar Va7
= i€ _Ey
dt - — - - —
a-u =—-atut+d-Uu=—y*V-Ay+y*4A-yV =0

3.3

World-lines describes the movement of a particle in a space-time with a certain physical condition imposed
on it. So in order to find a particle world-line we have to establish two things: 1) The space-time, which is
a sort of background, constraint or grid that the particle can move in. 2) The physical condition, e.g. a
velocity, acceleration or trajectory. The tricky part in these calculations and finding the world-line® is to
translate the physical condition into the correct space-time language and to keep track of the coordinates.
Often the physical condition is given as a three vector and we have to translate it into a four-vector as the
examples below will show.

—\ 2 —\2
2 Notice: In the case of positive signature we would have: = n,gufu, = y? —y3(V) = y? (1 - (V) ) =1
3 Also notice, that if we have no physical conditions imposed on the particle, the particle is moving freely and the world-
line becomes a geodesic, which we will look at more thoroughly in later chapters.
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@ @y az)
dt’ dt’dt - (VX’O!O) We want

to know a) the particle world-line expressed parametrically as a function of t: (t(r),x(r)) and b) the

A particle is moving along the x-axis with constant three velocity: V= (

. ityeq = (3 4x dy dz\ _ ot ox
particle four-velocity: u = (dT,dT, dr,dr) = (u*,u*,0,0)
The particle is moving along the x-axis in a space-time described by
ds? = —dt?® +dx?
_ _ (-1
Gab = MNab = { 1}
= dr®  =4dt? — dx?
The world-line:
dr\? dxy?
<_) =1- (_> =1- (V)2 (3.1.)
dt dt

= dt  =,/1— (V,)2dt
T—Tp =41-(4)%
T

= t(r) = S—W AT

U

dx
= =V
dt x
= dx =1V.dt
= x—xy =Vt
V() =
= x(t) = T) =°"—7/——m—
@ =% NEEYUAE
. . . dt dx
The four-velocity: We use (3.1.) to find the four-velocity u = (E’ E)
dr\?
=) =1-()?
(dt) g
dt _ 1 .t
= L ==
dr  J1-(%)?2
dx dx dt dt V,
- = —_———= Vx —_———_— = ux
dt dt dt ar - [1—(V,)2
1 /A
= u =7 = >
V1= )2 1= )
Collecting the results:
The world-line®
T
t(t) —
N AL
A
x(T) T T
v1—-A)
The four-velocity®
4 Negative time-signature i.e. dt? = —ds?. See chapter 2

t(0)=0=>1,=0
5x(0)=0=>x,=0

= (E20) = 07)

8 gnuplot> g=1/sqrt(1-(1/2)"2)
gnuplot> plot g*t,g*t/2 title "t(tau), x(tau) v_x=1/2c"

2 2
% Checking the conservation of four-velocity: —(u®)* + (u*)? = — (\/1—21/,()2) + (J1—‘/()i/x)2> =-1
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3.3.2 ™ Four vectors of a free particle with constant velocity.
A particle with rest mass mg is moving at constant velocity |I7

. . dt dx dy dz
wan know a) Th rticle four-velocity: u = (—,—,—,—
ant to know a) The particle four-velocity: u 70 de dc e
mentum vector
The Three vector

- dx dy dz
v ( 24

The particle is moving in a space-time described by

ds? = —(cdt)? + dx? + dy?
-1
Gab “MNap = { 1 }
1
= dt? = (cdt)? — dx? — dy?

2

() =1 () (&) () - (5) =1 2

dt dx dy dz)

The four-velocity: u = (dr'ﬁl’ﬂ’dr

dt =10ﬁ= 1:\/5
dt 1—<K> 2

c
5 o dxdr_ de A !
X —_——_—— = —_—— — = —
P Tdtar "dr — Y ¢
dr 1- V)

dydt  dt v, 1

d =——=V—:—= Yy =—
Y Twd Yl — T
dt 1—(V)

1 V. V.

= u =1u

-0 im0y -0
=\/§(1,%,%,0)

The energy-momentum vector p = myu

10 This is the familiar y- factor
1 _ ()/,)/V)

http://physicssusan.mono.net
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in a direction 45° to the x-axis. We

) = (ut,u*,u¥,0) and b) the energy-mo-

)—(VV V)—(1 ! 0)
dae’de'dr) ~ V) T \202¢

5= 5
V2
5= &
V2
0 =(x/§,
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,0

dt dx dy dz mg myV, myly,
p = ( ) 12

dr’dr’ dt’dt 2 2 )
-0 1-@) [1-®)
c
The particle energy

E =+2m,

The particle impulse
P =myg (\/%\/% 0) = myyV — myV for small velocities

3.4 Non-constant velocities

3.4.1 "Parametrizing and four vectors of a free particle with non-constant velocity.

dx dy E) = ( 0, ())
dt’ dt’dt Vi+k2t2’
know a) the particle world-line expressed parametrically as a function of t: (t(r),x(r)), b) the particle
dt dx dy dz
d‘r dT dt’ d‘r

A particle is moving along the x-axis with three velocity: V= ( We want to

four-velocity: u = = (ut,u*,0,0), c) the particle four impulse: p = myu, d) and the parti-
0

: dp _ ., du
cle four force: f = 7. = Mo
We begin by noticing that
kt
Vy, =—=-1(=0)ift>
V1T +k%2 /
The particle is moving along the x-axis in a space-time described by
ds? = —dt? + dx?
-1
Gab ~ MNab = { 1}
= dr? = 13dt? — dx?
The world-line
dr\? dx kt k2t? 1
<_) =1 (_) =1— (—) =1- = (3.2.)
dt dt V1 + k2t2 1+ k%t? 1+ k?t?
dt
= dt = —
V1 + k2t?
dt arcsinh(kt)
= T—Tg =14
V1 + k2t? k
R (D) s smhk(kr)
dx kt
a1 -;{kzt2
t
= dx =-———=dt
V1+ katZ )
t
= X—%y = |—==dt=1—-1+k?t?
0 .[\/1 ¥ k2t2 k

12 —

(mo% mo)’V)
13 Negative time-signature i.e. dt? = —ds?. See chapter 2

14 —

fm arcsmh( ) (Spiegel, 1990) (14.182)
Bt0)=0=>1,=0
t6 [ \/ﬂ VxZ + aZ (Spiegel, 1990) (14.183)
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1 1
= X(T) :17E\/1+k2t2—E

1 sinh(kT) 21
= — 2|~ 7| __
- 1+k( ! ) -

e cosh(kt) 1

4 k
- - velocity u = (4 @ av dz
The four-velocity: We use eq. (3.2.) to find the four-velocity u = (dr, ot dT)

dr\* _ 1
(E) 14 k2t(1)?
dt

inh(k 2
= o =V1tkit@? = Jl + k? <w> = cosh(kt) = u*

dx dx dt kt
— =——=——-—+/1+4k?t? = kt(r) = sinh(kr) = u*
E A ioen (™) (k1)

= u = (cosh(kt), sinh(kt))

°Notice we can rewrite the three-velocity as a function of t
dx dxdt sinh(kt
— == # = tanh(k7)
dt dt dt cosh(kt)
t X t X
PThe four-force: f = (di di) =m, (d“ du )

dt ’odt dr’  dr
du .
me—— = moacosh(kr) = myk sinh(kt) = f*
du* d . X
mo? = moasmh(kr) = myk cosh(kt) = f
= f = (myksinh(kt), myk cosh(kt))

Collecting the results:
The world-line®®
Hr) = sinh(kT)

x(1) = cosh(krt) 3 1 tF
K ko
The four-velocity? 3 |
ut(r) = cosh(kr)
u*(t) = sinh(kr) r
The four-impulse
pt(t) = mgcosh(kr) |
p*(r) = mgsinh(kt) L
The four-force \

ft(r) = kmgsinh(kt) 0 ) ' : 4 5 ¢
f*(®) = kmgcosh(kr) L ;
Tx0) =022 =

18 cosh? x — sinh? x = 1 (Spiegel, 1990) (8.11)
1% gnuplot> plot sinh(t),cosh(t)-1 k=1"
20 Checking the conservation of four-velocity: —(uf)? + (u*)? = — cosh?(kt) + sinh? (k1) = —1
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A particle is moving along the x-axis with an acceleration, when measured in the particle rest-frame is

always constant g i.e. F= (mg,0,0). We want to know a) the particle world-line expressed parametrically
ion of 1 i velocity: u = (& % @ d2) _ e

as a function of 7: (t(1), x(t)) and b) the particle four-velocity: u = (dr, i ,dT) (ut,u*,0,0)

The particle is moving along the x-axis in a space-time described by

ds? = —dt? + dx?
_ (-1
Yab =Nab = { 1}
= dr? =21dt? — dx?
G -i-()
= i =1-—(=
dt dt

The world-line
From the space-time we know

(dr)z _, (dx)2_1 (drdx)z_l (dr)z (dx)2
dt) (11t B dt dt) dt) \dt

- N e
a J1+(7)
The physical condition
F = (mg,0,0)
The four force
. oo _de, dt v dedw
dr'* dr dr dr dt
= d_u" =mg
dt
R d’x  d gdx\ dtd dx\ dtdu® dt dx\?
7 ~ala) " wwl@ " wa a9 (&)
This we can solve in order to find u* (1) = %
= d_ux =mg+/ 1+ (u*)?
dt

d(u™) 2 arcsinh(ux (T))

1
- roTo _m_gj,/1+(uX)2_ mg

= u*(t) =sinhmg(r — 1)
N dx 25 sinh( )
— = 2sinh(mgr
dt 4
= xX—xy = fsinh(mgr) dt = cosh(mgr)
= x(r) =24cosh(mmgr) —1
1 1 1
dT == = =
- dx\> /14 (sinh(mgr))?2 cosh(mgr)
a1+ (z)
T
21 Negative time-signature i.e. dt2 = —ds?. See chapter 2
2 | \/% = arcsinh > (Spiegel, 1990) (14.182)
2 Assuming that u*(0) = 0
24 Assuming that x(0) = 0
9
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= t—t, = f cosh(mgrt) dt = sinh(mgrt)

= t(r) =25sinh(mgr)
Collecting the results:
The world-line?
t(t) = sinh(mmgr)
x(t) = cosh(mgr) —1
The four-velocity?’
ul(t) = cosh(imgr)
u*(t) = sinh(imgr)
The four-force
f*(r) = mgcosh(ingr)

A particle with charge g and rest mass mg is moving in a circular orbit with radius r in a uniform magnetic
field B with total energy E = \/m3 + (p)? and three-force F= q(l7 X §). We want to find 1) The radius
of the orbit and 2) The four-force.
I7, the velocity, is a tangent vector to the circular orbit and §, the magnetic field is perpendicular to the
circular orbit and the three-force is radial (pointing inwards).
The centripetal acceleration is radial(pointing outwards) is given by
. -2
@ _a_)7
dt ror
The three-force:

L, dp__d|[ mv |\ av (V)
F —E—moa —_)2 —mOVE—mOV -
1-(V)

The magnetic three-force and the centripetal three-force has the same size.

(V)7
r — —
-1 =la(VxB)|
|moy - TZ ( )
I_/> e
= mo)’(r) =q|V|B
= m0y|l7| =rqB
= Ipl =rqB
= r =|L7|=E2——m(2)
qB qB

The four-force:
ft =yF.-V =20

Ifl =

dp
which is a radial component.

dt

£ = gB ., gB
= v[F| = valP|B = =15 = = B2 = m

25 Assuming that t(0) = 0

26 gnuplot> plot sinh(t),cosh(t)-1 title "t(tau)=sinh(tau),x(tau)=cosh(tau)-1"

27 Checking the conservation of four-velocity: —(u‘)? + (u*)? = — cosh?(gt) + sinh?(g7) = —1

28 |n this case |l7|is constant, but the particle is stille accelerated because the direction of V constantly is changing tan-
gentially along the circular movement.

29 Because F and V are perpendicular

10
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Notice: The relativistic factor shows itself in the \/E2 — m2 component.

3.5

So far we have only looked at the phenomena itself, but what happens when an observer in a laboratory
becomes involved. Clearly we have to take into account if the laboratory and the observed phenomena is
moving with respect to each other.

The observers laboratory is described by a set of four orthonormal vectors varying with the observers
proper time: eg, e, €3 and e3. These four vectors define a time direction eg and three space or spatial
directions ez, e5 and e3. It is important to notice that the time-like unit vector equals the observers four-
velocity.

e5(T) = Upps(T)
And
egreg =-—1
efrep =ey;-ey=ez-ez3=1

If a particle with four-impuls p is observed in a laboratory as described above, the measured components
pa along each direction are given by

pO = 30 — p-ep (33)
pl =3p-e
p? — p . e’Z\
PP =p-es
Now because p6 equals the measured energy in the laboratory we can rewrite eq. (3.3.)
Eops = —D " Uops

"We can also describe — which | prefer - an observers laboratory in coordinate space defined by its space-
time (if the metric is diagonal)

ds? = goo(dx®)* + g11(dx")? + gpp(dx?)? + g33(dx?®)?
The basis:

(ep)* = ((—goo)‘%, 0, 0,0)
0 =(0.(9:)72,0,0)
e)* = (0,0,(922)2,0)
(e3)® =<0,0,0,(g33)—%)

Notice:

e

Q)
o)

= (eg)q - (eg)* = gaﬁ(eﬁ)ﬁ - (eg)* = goo(—goo)_%(—goo)_% =-1

1 1
€161 = (e1)q - (ep)* = gaﬁ(ei)ﬁ -(e1)% = g11(g911) 2(g911) 2=1

If a particle with four-impuls p is observed in a laboratory as described above, the measured components

pCAr along each direction are given by

po = 32 — p . ea

pl =3p-eg

pz = p . ei

p3 = p . e§
30 The components are defined by: p = p%ez = p - e5 = p¥es - e5 = paea ceg = —p6
31 The components are defined by: p = p%e; = p - e = pley-e; = plei -e; = p1
32 The components are defined by: p = p%ez = p - e5 = pPes - e = poeﬁ ‘e = —p6
33 The components are defined by: p = p%e; = p - e = pley-e; = plei -e; = p1

11
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A stationary particle with rest-mass m, has four-momentum p% = (mmy,p) = (m,, 0) is observed by an
observer in a laboratory with constant velocity V. We want to find the observed energy.
The space-time is the ordinary Minkowsky space so
ds? = —dt?+dx? +dy? + dz?
-1
1
Nap = 1

1
The observers four-velocity:
Uops = (]/. VV)
= Eobs = =D Uops = —P% " Uopsa = —NapP® - ugbs = —Tloopo ) ugbs = myYy

A particle with four-momentum p and rest-mass m is passing through an observers system with four-ve-

locity u,ps. Because p? = —m? is an invariant we know that

-m? = pz = _Eozbs + (ﬁobs)z =—(-p- uobs)z + (ﬁobs)z

The measured impulse in the laboratory
= (ﬁobs)z =(- uobs)z + pz =(- uobs)2 —m?

Imaging an accelerating observer moving in a frame where* u5,. = (coshar, sinhat, 0,0) passing by a

stationary star emitting photons with wave vector k% = 35(w,, w,, 0,0). What is the observed frequency?
The space-time is the ordinary Minkowsky space so

ds? = —dt?+dx?+dy?*+dz?
-1
_ 1
Nap = 1
1
We have
Eops = =D Uops
For photons we know that
E =hw
p =hk
= w(t) =-k- Upps = _kauobs,a = —Uaﬁk“ufbs = _nttktugbs - nxxkxugbs
= k*u,, — k*u’,; = w,(coshar — sinhar) = w, exp(—ar)
Notice:
1) When the observer is moving towards the star T < 0
= w(t) > w,

The light is blue-shifted
2) When the observer is moving away from the star 7 > 0
= w() <w,

The light is red-shifted

*Notice: The orthonormal basis describing the laboratory:
e§ =udys = (cosh(ar),sinh(ar),0,0)
e = (sinh(at), cosh(ar),0,0)
es =(0,0,1,0)

34 This is the frame for a constant acceleration particle — see former examples.
35 Notice: k? = k%ky = 1gpk®kP = —(k")? + (k*)? = —w? + w? = 0 (photon)
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eg =(0,0,0,1)
The measured components of the wave-vector k% = (w,, w,, 0, 0) along each direction are given by
k6 =—k- ey = —k* - €da = —T]aﬁka . eég = —(—kt . eé + k* - eﬁ’f)
= w,(cosh(ar) — sinh(ar))
k1 :k'eizk“'ei,aZUaﬁka'ef =—kt-e{+kx'e%
= w,(—sinh(ar) + cosh(ar))

k2 =k- es =0
kK3 =k-e3=0
= k& = 36(w,(cosh(ar) — sinh(ar)), w,(~ sinh(ar) + cosh(ar)), 0, 0)

Consider the two-dimensional space-time®’
ds* = —X*dT?+dX*

Gap — {_XZ 1}

=  dt? =38X2qQT? — dX?

An observer moves on a curve — this is the observers world-line
X =2T forT>1

The four-velocity (or rather two-velocity) of the observer is:

dT dX
u - T‘ ¥ - <_'_)
R dr drt
Manipulating the metric we get

(@) =) - o () s

daTr dT

= ;i_; =2JT2 -1 T2 —-1>0
R ar 1

dt 29T2 -1

oy _ATdx 1 den 1 _ 1
=  — dvdlT 2yT2—1 dT  \T2—1 [ 2

dt (—X) -1

( 1 1 ) 1 1

: = ) =

" VT2 -1 VT2 -1

MR CORE

Is the curve X = 2T of the observer time-like or space-like:
Manipulating the metric we get

2 2
ds? = (-xz + (%) >dT2 - ((27")2 - <$) )de = —4(1? - D

<0
Which means the curve is timelike.
Another possibility is to look at the square of the four-velocity

3 Notice: k% = k%, = naﬁkakﬁ = —(kf)2 + (k’?)2 = —w?[(cosh(at) — sinh(ar))? — (- sinh(ar) +
cosh(ar))? = —w?[cosh?(ar) + sinh?(ar) — 2 cosh(ar) sinh(ar) — sinh?(ar) — cosh?(ar) +

2 sinh(at) cosh(at) = 0 (photon)

37 This is actually the Rindler metric, which we look at in a later chapter.

38 Negative time-signature i.e. dt2 = —ds?. See chapter 2
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u-u =upu’ +ugu® = grrh)? + gyx(w*)?
=—X2< ) +( ! ) =_(2T)2 2 + 21
2VT2 — % VT2 -1 4T*-1) (T*°-1)
= (—Tz + 1)m =-1

i.e. the curve is timelike.
Collecting the results:
The world-line*®

X(t) =2T()
The four-velocity
(T _
u =—
2VT?2 -1
u*(T) = —
(T) ]

An astronaut stationed in a laboratory outside a spherical symmetric star is measuring radially outwards
moving protons produced by the star. One particular proton is measured to have the energy E and mo-
mentum P. The mass of the star is M and the laboratory is hovering at a fixed distance R. We want to find
the components of the of the energy-momentum vector (pt,ﬁ) in the Schwarzschild space-time of the
proton expressed by the measured values.

The Schwarzschild space-time

2M 2M\7!
dSZ = —(1—7) dtz +(1—T) dr2+r2(d92+sin29d¢2)
The coordinate basis describing the laboratory
1
2M\"2
e =|(1-=7) "0.00
r
1
2M\2
(ep)* = 0,<1 —7) ,0,0

(e,)" =(o,o,%,o)
(e5)” =(o,o,o,L)

rsin@d
The observed properties

1

2M\ 2
Bobs = —p-er = —py - (€)* = —gapp” - (e)® = —gur" (1 - 7)
1
(. 2M\2
(-2
1 1
|ﬁ| a B a T ZM\2 r 2My 2
=p-e = pg- ()" = gapp” - (62)* = g (1—7) =p (1 —T>
1
¢ 2M\ 2
SN
¥ plot t,2*t
14

http://physicssusan.mono.net logik.susan@gmail.com



http://physicssusan.mono.net/9035/General%20Relativity%20-%20Relativity%20demystified

Lots of Calculations in GR — Four vectors and four velocity — Chapter 3 21 March 2023
Susawn Larsen

The four-force outside a black hole on a spacecraft with mass m

fo = dzx“+ra dxP dxY
-m drt? BY dr dr

We want to find the four-force observed by a stationary hovering spacecraft (i.e.dr = d6 = d¢ = 0).
The four-force in the radial direction:

d?r dxP dxY
T _ T -
f m<d12+rﬁy dt dT>
d?r t\2 dr NG dp\?
m< E) + l"T (d ) + Free (E) + FT¢¢ (E) ) = 4Omrrtt(ut)2
( 1

=)(-)(1-5) =m()

The four-force observed in the spacecraft:

— 1
fons = frer=fu(e)* = —=gapft - (er)* = grrfT(er)" = (1 - g) 1m (K) (1 - ﬂy

(-2

Imagine an astronaut stuck outside a black hole wants to go home. He has brought some kind of energy
device and wants to know the escape velocity needed in order to reach his home far away, slowly decel-
erating arriving with zero velocity. The astronaut, mass m, is at rest in the distance R from the center of
the black hole, mass M.

We treat the problem as an observer problem. The route back home is a radial geodesic as we found above

d 1 :
where d—t= T and “the energy the astronaut needs to escape and fly home is Egscqpe = my =

1
2
l_Vescape

The observer equation:

-
m which corresponds to the observed energy, E, ;.

po = Lobs = ~Pescape " €t = _(pescape)a - (ep)”
1
g o " 2M\ "2
= _gaﬁ(pescape) : (ef) =13 gtt(pescape) (1 - T)
2M 1/2
%0 |n the following chapters we will find: T'",, = 1 — =—, ut = (1 — T)

41| have presented this example in another chapter (chapter 12) too because | think it is a good example concerning
the observer problem as well as a black hole problem.

42 The situation is equivalent to a particle with four-impulse p = (M,V(;) passing a stationary observer with four veloc-

ity u, = (%,%,%,%) . The particle in this case has the energy E = —p - u,,. The escape energy has the opposite

sign. (Hartle, 2003, s. 98)
1
43 ()& — _2M\2
Recall: (e;)® = ((1 r) 0, 0,0)
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_45(1 2M> 1 (1 2M>‘E_ (1 2M> 2
B )™ 1 2M r -m r
r
1 1
m 2M\ "2
:> — —
1_Ve§cape - m( r )
2M
= Vescape = |—
R
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a4 Lt —
Recall: p* = Mystronaut .

% Recall: gpp = — (1 - ﬂ)

r
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