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Space-time  Line-element Chapter 

Three dimensional flat space-time 𝑑𝑠2 = −(𝑐𝑑𝑡)2 + 𝑑𝑥2 + 𝑑𝑦2 3 

Two-dimensional flat space-time 𝑑𝑠2 = −𝑋2𝑑𝑇2 + 𝑑𝑋2 2,3,4 

Two-dimensional flat space-time 𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑥2 3 

3 Four vectors and four velocity 

3.1 Four vectors 

3.1.1 aThe sum of two four vectors 
If 
 𝑎 = (𝑎0, 𝑎1, 𝑎2, 𝑎3) = (−2, 0, 0, 1)  
 𝑏 = (𝑏0, 𝑏1, 𝑏2, 𝑏3) = (5, 0, 3, 4)  
 𝑎 − 5𝑏 = (−2, 0, 0, 1) − 5 ⋅ (5, 0, 3, 4) = (−27, 0, −15, −19)  
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3.1.2 b cThe product of two four vectors 
If 
 𝑎 = (𝑎0, 𝑎1, 𝑎2, 𝑎3) = (−2, 0, 0, 1)  
 𝑏 = (𝑏0, 𝑏1, 𝑏2, 𝑏3) = (5, 0, 3, 4)  
 

𝜂𝑎𝑏 = {

−1
1

1
1

} 

 

 𝑎 ⋅ 𝑏 = −𝑎0𝑏0 + 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3 = 10 + 0 + 0 + 4 = 14  
If 
 𝑣𝑎 = (2, 1, 1, −1)  
 𝑤𝑎 = (−1, 3, 0, 1)  
 

𝜂𝑎𝑏 = {

1
−1

−1
−1

} 

 

 𝑣 ⋅ 𝑤 = 𝑣𝑎𝑤
𝑎 = 𝜂𝑎𝑏𝑣

𝑎𝑤𝑎 = −2− 3 − 0 + 1 = −4  

3.1.3 d Timelike, spacelike or null-vector 
If 
 𝑎 = (𝑎0, 𝑎1, 𝑎2, 𝑎3) = (−2, 0, 0, 1)  
 𝑏 = (𝑏0, 𝑏1, 𝑏2, 𝑏3) = (5, 0, 3, 4)  
 

𝜂𝑎𝑏 = {

−1
1

1
1

} 

 

 𝑎 ⋅ 𝑎 = −(𝑎0)2 + (𝑎1)2 + (𝑎2)2 + (𝑎3)2 = −4 + 0 + 0 + 1 = −3 < 0 𝑖. 𝑒. 𝑡𝑖𝑚𝑒𝑙𝑖𝑘𝑒  
 𝑏 ⋅ 𝑏 = −(𝑏0)2 + (𝑏1)2 + (𝑏2)2 + (𝑏3)2 = −25 + 0 + 9 + 16 = 0 𝑖. 𝑒. 𝑛𝑢𝑙𝑙 𝑣𝑒𝑐𝑡𝑜𝑟  

3.1.4 eThe separation between two events in flat spacetime 
The separation (Δ𝑠)2 between two events in flat space is described by a four-vector 
 𝐸1 = (−1, 3, 2, 4)  
 𝐸2 = (4, 0, −1, 1)  
 

𝜂𝑎𝑏 = {

1
−1

−1
−1

} 

 

 (Δ𝑠)2 = (𝐸2
0 − 𝐸1

0)2 − (𝐸2
1 − 𝐸1

1)2 − (𝐸2
2 − 𝐸1

2)2 − (𝐸2
3 − 𝐸1

3)2 = 25 − 9 − 9 − 9 = −2 > 0  
Which is timelike. 

3.1.5 fLorentz boost and the conservation of orthogonality 
In the inertial system (𝑡, 𝑥, 𝑦, 𝑧) we have the two orthogonal four vectors 
 𝑎 = (𝑎𝑡 , 𝑎𝑥 , 𝑎𝑦, 𝑎𝑧) = (1, 0, 0, 0)  
 𝑏 = (𝑏𝑡, 𝑏𝑥, 𝑏𝑦, 𝑏𝑧) = (0, 1, 0, 0)  
 

𝜂𝑎𝑏 = {

−1
1

1
1

} 

 

 𝑎 ⋅ 𝑏 = −𝑎𝑡𝑏𝑡 + 𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦 + 𝑎𝑧𝑏𝑧 = −1 + 1 = 0  
The inertial system (𝑡′, 𝑥′, 𝑦′, 𝑧′) is related to the system (𝑡, 𝑥, 𝑦, 𝑧) by a uniform velocity 𝑣 
along the 𝑥-axis. A four vector is transformed by the Lorenz boost 
 𝑎𝑡

′
 = 𝛾(𝑎

𝑡 − 𝑣𝑎𝑥)  
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 𝑎𝑥
′
 = 𝛾(𝑎𝑥 − 𝑣𝑎𝑡)  

 𝑎𝑦
′
 = 𝑎𝑦  

 𝑎𝑧
′
 = 𝑎𝑧  

⇒ 𝑎′ = (𝑎𝑡
′
, 𝑎𝑥

′
, 𝑎𝑦

′
, 𝑎𝑧

′) = (𝛾, −𝛾𝑣, 0, 0)  

 𝑏′ = (𝑏𝑡
′
, 𝑏𝑥

′
, 𝑏𝑦

′
, 𝑏𝑧

′) = (−𝛾𝑣, 𝛾, 0, 0)  

 𝑎′ ⋅ 𝑏′ = −𝑎𝑡
′
𝑏𝑡

′
+ 𝑎𝑥

′
𝑏𝑥

′
+ 𝑎𝑦

′
𝑏𝑦

′
+ 𝑎𝑧

′
𝑏𝑧

′
= 𝛾2𝑣 − 𝛾2𝑣 = 0  

And we can conclude, that the orthogonality is conserved. 

3.2 Four-velocity, Four-impulse, Four-force: Definitions and useful properties 
The four-velocity 
 

𝑢 = (
𝑑𝑡

𝑑𝜏
,
𝑑𝑥

𝑑𝜏
,
𝑑𝑦

𝑑𝜏
,
𝑑𝑧

𝑑𝜏
) = (𝑢𝑡 , 𝑢𝑥 , 𝑢𝑦, 𝑢𝑧) = (𝛾, 𝛾𝑉⃗ ) =

(

 
1

√1 − (𝑉⃗ )
2
,

𝑉⃗ 

√1 − (𝑉⃗ )
2

)

  

 

𝑢𝑡 
=

1

√1 − (𝑉⃗ )
2

 

 

𝑢⃗  
=

𝑉⃗ 

√1 − (𝑉⃗ )
2

 

The three-velocity: 
 

𝑉⃗  = (
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
,
𝑑𝑧

𝑑𝑡
) 

 

The 𝛾 −factor 
 

𝛾 
=

1

√1 − (𝑉⃗ )
2

 
 

 

𝛾̇ =
𝑑

𝑑𝑡

(

 
1

√1 − (𝑉⃗ )
2

)

 = −2𝑉⃗ 
𝑑𝑉⃗ 

𝑑𝑡
(−
1

2
)

1

(1 − 𝑉⃗ 2)
3
2

= 𝛾3𝑉⃗ ⋅ 𝐴  

 

The four-impulse (also named the energy-momentum vector): 
 

𝑝 = 𝑚𝑢 = (𝑝𝑡 , 𝑝 ) = 𝑚 (
𝑑𝑡

𝑑𝜏
,
𝑑𝑥

𝑑𝜏
,
𝑑𝑦

𝑑𝜏
,
𝑑𝑧

𝑑𝜏
) = (𝑚𝛾,𝑚𝛾𝑉⃗ ) 

 

 

𝑝𝑡 
= 𝑚

𝑑𝑡

𝑑𝜏
=

𝑚

√1 − (𝑉⃗ )
2
= 1𝐸 

 

 

𝑝  
=

𝑚𝑉⃗ 

√1 − (𝑉⃗ )
2

 
 

The four-force: 
 

𝑓 =
𝑑𝑝

𝑑𝜏
= (𝑓𝑡 , 𝑓 ) 

 

 𝑓𝑡 = 𝛾𝐹 ⋅ 𝑉⃗   

 
𝑓  =

𝑑𝑝 

𝑑𝜏
=
𝑑𝑝 

𝑑𝑡

𝑑𝑡

𝑑𝜏
= 𝛾𝐹  

 

                                                           
1 Notice: For small velocities 𝑉⃗ ≪ 1: 𝑝𝑡 = 𝑚(1 +

1

2
(𝑉⃗ )

2
) = 𝑚 +

1

2
𝑚(𝑉⃗ )

2
+⋯ which corresponds to the particle rest 

mass plus the particle kinetic energy, hence 𝑝𝑡 is interpreted as the particle energy. 
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The three-force 
 

𝐹  ≡
𝑑𝑝 

𝑑𝑡
 

 

gThe four-acceleration 
 

𝑎 =
𝑑𝑢

𝑑𝜏
= (𝑎𝑡 , 𝑎 ) 

 

 
𝑎𝑡 =

𝑑𝑢𝑡

𝑑𝜏
=
𝑑𝑡

𝑑𝜏

𝑑𝑢𝑡

𝑑𝑡
= 𝛾𝛾̇ = 𝛾4𝑉⃗ ⋅ 𝐴  

 

 
𝑎  =

𝑑𝑡

𝑑𝜏

𝑑𝑢⃗ 

𝑑𝑡
= 𝛾

𝑑

𝑑𝑡
(𝛾𝑉⃗ ) = 𝛾2

𝑑𝑉⃗ 

𝑑𝑡
+ 𝛾𝛾̇𝑉⃗ = 𝛾2𝐴 + 𝛾(𝛾3𝑉⃗ ⋅ 𝐴 )𝑉⃗ = 𝛾2𝐴 (1 + 𝛾2(𝑉⃗ )

2
) 

 

 

 = 𝛾2𝐴 (1 +
(𝑉⃗ )

2

1 − (𝑉⃗ )
2) = 𝛾

2𝐴 (
1

1 − (𝑉⃗ )
2) = 𝛾

4𝐴  

 

The three-acceleration 
 

𝐴  =
𝑑𝑉⃗ 

𝑑𝑡
 

 

Notice the following: 
 𝑢 ⋅ 𝑢 = h𝑢𝛼𝑢

𝛼 = 𝜂𝛼𝛽𝑢
𝛽𝑢𝛼 = −𝛾2 + 𝛾2(𝑉⃗ )

2
= −𝛾2 (1 − (𝑉⃗ )

2
) = 2 − 1  

 𝑝 ⋅ 𝑝 = 𝑚2𝑢 ⋅ 𝑢 = −𝑚2  

 𝑝 ⋅ 𝑝 = 𝜂𝛼𝛽𝑝
𝛽𝑝𝛼 = −(𝑝𝑡)2 + (𝑝 )2 = −𝐸2 + (𝑝 )2 = −𝑚2  

⇒ 𝐸 = i√𝑚2 + (𝑝 )2  

 
𝑚
𝑑(𝑢 ⋅ 𝑢)

𝑑𝜏
 = 0 

 

⇒ 𝑓 ⋅ 𝑢  = j
𝑑𝑝

𝑑𝜏
⋅ 𝑢 = 𝑚

𝑑𝑢

𝑑𝜏
⋅ 𝑢 =

1

2
 𝑚
𝑑(𝑢 ⋅ 𝑢)

𝑑𝜏
= 0 

 

 𝑓 ⋅ 𝑢 = 𝜂𝛼𝛽𝑓
𝛽𝑢𝛼 = −𝑓𝑡𝑢𝑡 + 𝑓 ⋅ 𝑢⃗ = −𝑓𝑡𝛾 + 𝛾𝐹 ⋅ 𝛾𝑉⃗ = 0  

⇒ 𝑓𝑡 = k𝛾𝐹 ⋅ 𝑉⃗   

 𝑓𝑡 =
𝑑𝐸

𝑑𝜏
=
𝑑𝐸

𝑑𝑡

𝑑𝑡

𝑑𝜏
= 𝛾

𝑑𝐸

𝑑𝑡
= 𝛾𝐹 ⋅ 𝑉⃗  

 

⇒ 
𝑑𝐸

𝑑𝑡
 = 𝐹 ⋅ 𝑉⃗  

 

 𝑎 ⋅ 𝑢 = −𝑎𝑡𝑢𝑡 + 𝑎 ⋅ 𝑢⃗ = −𝛾4𝑉⃗ ⋅ 𝐴 𝛾 + 𝛾4𝐴 ⋅ 𝛾𝑉⃗ = 0  

3.3 Four-velocity, Four-impulse, Four-force and world-lines: Examples 
World-lines describes the movement of a particle in a space-time with a certain physical condition imposed 
on it. So in order to find a particle world-line we have to establish two things: 1) The space-time, which is 
a sort of background, constraint or grid that the particle can move in. 2) The physical condition, e.g. a 
velocity, acceleration or trajectory. The tricky part in these calculations and finding the world-line3 is to 
translate the physical condition into the correct space-time language and to keep track of the coordinates. 
Often the physical condition is given as a three vector and we have to translate it into a four-vector as the 
examples below will show. 

                                                           
2 Notice: In the case of positive signature we would have: = 𝜂𝛼𝛽𝑢

𝛽𝑢𝛼 = 𝛾
2 − 𝛾2(𝑉⃗ )

2
= 𝛾2 (1 − (𝑉⃗ )

2
) = 1 

3 Also notice, that if we have no physical conditions imposed on the particle, the particle is moving freely and the world-
line becomes a geodesic, which we will look at more thoroughly in later chapters. 
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3.3.1 lParametrizing and four vectors of a free particle with constant velocity. 

A particle is moving along the x-axis with constant three velocity: 𝑉⃗ = (
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
,
𝑑𝑧

𝑑𝑡
) = (𝑉𝑥 , 0 ,0). We want 

to know a) the particle world-line expressed parametrically as a function of 𝜏: (𝑡(𝜏), 𝑥(𝜏))  and b) the 

particle four-velocity: 𝑢 = (
𝑑𝑡

𝑑𝜏
,
𝑑𝑥

𝑑𝜏
,
𝑑𝑦

𝑑𝜏
,
𝑑𝑧

𝑑𝜏
) = (𝑢𝑡 , 𝑢𝑥 , 0, 0) 

The particle is moving along the x-axis in a space-time described by 
 𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑥2  
 𝑔𝑎𝑏 = 𝜂𝑎𝑏 = {

−1
1
}  

⇒ 𝑑𝜏2 = 4𝑑𝑡2 − 𝑑𝑥2  

The world-line: 

 (
𝑑𝜏

𝑑𝑡
)
2

 = 1 − (
𝑑𝑥

𝑑𝑡
)
2

= 1 − (𝑉𝑥)
2 (3.1.) 

⇒ 𝑑𝜏 = √1 − (𝑉𝑥)
2𝑑𝑡  

⇒ 𝜏 − 𝜏0 = √1 − (𝑉𝑥)
2𝑡  

⇒ 𝑡(𝜏) =
5

𝜏

√1 − (𝑉𝑥)
2

  

 
𝑑𝑥

𝑑𝑡
 = 𝑉𝑥 

 

⇒ 𝑑𝑥 = 𝑉𝑥𝑑𝑡  
⇒ 𝑥 − 𝑥0 = 𝑉𝑥𝑡  

⇒ 𝑥(𝜏) = 𝑉𝑥𝑡(𝜏) = 6
𝜏𝑉𝑥

√1 − (𝑉𝑥)
2

 
 

The four-velocity: We use (3.1.) to find the four-velocity 𝑢 = (
𝑑𝑡

𝑑𝜏
,

𝑑𝑥

𝑑𝜏
) 

 (
𝑑𝜏

𝑑𝑡
)
2

 = 1 − (𝑉𝑥)
2 

 

⇒ 
𝑑𝑡

𝑑𝜏
 =

1

√1 − (𝑉𝑥)
2
= 𝑢𝑡 

 

 
𝑑𝑥

𝑑𝜏
 =

𝑑𝑥

𝑑𝑡

𝑑𝑡

𝑑𝜏
= 𝑉𝑥

𝑑𝑡

𝑑𝜏
=

𝑉𝑥

√1 − (𝑉𝑥)
2
= 𝑢𝑥 

 

⇒ 𝑢 = 7 (
1

√1 − (𝑉𝑥)
2
,

𝑉𝑥

√1 − (𝑉𝑥)
2
) 

 

Collecting the results: 
The world-line8 

𝑡(𝜏) =
𝜏

√1 − (𝑉𝑥)
2
 

𝑥(𝜏) =
𝜏𝑉𝑥

√1 − (𝑉𝑥)
2
 

The four-velocity9 

                                                           
4 Negative time-signature i.e. 𝑑𝜏2 = −𝑑𝑠2. See chapter 2 
5 𝑡(0) = 0 ⇒ 𝜏0 = 0 
6 𝑥(0) = 0 ⇒ 𝑥0 = 0 
7 = (

𝑑𝑡

𝑑𝜏
,
𝑑𝑡

𝑑𝜏
𝑉𝑥) = (𝛾, 𝛾𝑉⃗ ) 

8 gnuplot> g=1/sqrt(1-(1/2)^2)                                                 
  gnuplot> plot g*t,g*t/2 title "t(tau), x(tau) v_x=1/2c " 

9 Checking the conservation of four-velocity: −(𝑢𝑡)2 + (𝑢𝑥)2 = −(
1

√1−(𝑉𝑥)
2
)
2

+ (
𝑉𝑥

√1−(𝑉𝑥)
2
)
2

= −1 
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𝑢𝑡 =
1

√1 − (𝑉𝑥)
2
 

 

𝑢𝑥 =
𝑉𝑥

√1 − (𝑉𝑥)
2
 

3.3.2 m Four vectors of a free particle with constant velocity. 

A particle with rest mass 𝑚0 is moving at constant velocity |𝑉⃗ | =
𝑐

√2
 in a direction 45° to the x-axis. We 

want to know a) The particle four-velocity: 𝑢 = (
𝑑𝑡

𝑑𝜏
,
𝑑𝑥

𝑑𝜏
,
𝑑𝑦

𝑑𝜏
,
𝑑𝑧

𝑑𝜏
) = (𝑢𝑡 , 𝑢𝑥 , 𝑢𝑦, 0) and b) the energy-mo-

mentum vector 
The Three vector 
 

𝑉⃗  = (
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
,
𝑑𝑧

𝑑𝑡
) = (𝑉𝑥, 𝑉𝑦, 𝑉𝑧) = (

1

2
𝑐,
1

2
𝑐, 0) 

 

The particle is moving in a space-time described by 
 𝑑𝑠2 = −(𝑐𝑑𝑡)2 + 𝑑𝑥2 + 𝑑𝑦2  
 

𝑔𝑎𝑏 = 𝜂𝑎𝑏 = {
−1

1
1

} 
 

⇒ 𝑑𝜏2 = (𝑐𝑑𝑡)2 − 𝑑𝑥2 − 𝑑𝑦2  
 

(
𝑑𝜏

𝑐𝑑𝑡
)
2

 = 1 − (
𝑑𝑥

𝑐𝑑𝑡
)
2

− (
𝑑𝑦

𝑐𝑑𝑡
)
2

= 1 − (
𝑉𝑥
𝑐
)
2

− (
𝑉𝑦

𝑐
)
2

= 1 − (
𝑉⃗ 

𝑐
)

2

= 1 −
1

2
=
1

2
 

 

The four-velocity: 𝑢 = (
𝑑𝑡

𝑑𝜏
,
𝑑𝑥

𝑑𝜏
,
𝑑𝑦

𝑑𝜏
,
𝑑𝑧

𝑑𝜏
) 

 
𝑑𝑡

𝑑𝜏
 

= 10
1

√1 − (
𝑉⃗ 

𝑐)

2
=
1

√1
2

= √2 
 

 
𝑑𝑥

𝑑𝜏
 
=
𝑑𝑥

𝑑𝑡

𝑑𝑡

𝑑𝜏
= 𝑉𝑥

𝑑𝑡

𝑑𝜏
=

𝑉𝑥

√1 − (𝑉⃗ )
2
= 𝑢𝑥 =

1

2
𝑐√2 =

𝑐

√2
 

 

 
𝑑𝑦

𝑑𝜏
 
=
𝑑𝑦

𝑑𝑡

𝑑𝑡

𝑑𝜏
= 𝑉𝑦

𝑑𝑡

𝑑𝜏
=

𝑉𝑦

√1 − (𝑉⃗ )
2
= 𝑢𝑦 =

1

2
𝑐√2 =

𝑐

√2
 

 

⇒ 𝑢 = 11

(

 
1

√1 − (𝑉⃗ )
2
,

𝑉𝑥

√1 − (𝑉⃗ )
2
,

𝑉𝑦

√1− (𝑉⃗ )
2
, 0

)

 = (√2,
𝑐

√2
,
𝑐

√2
, 0) 

 

  = √2(1,
𝑐

2
,
𝑐

2
, 0)  

The energy-momentum vector 𝑝 = 𝑚0𝑢 

                                                           
10 This is the familiar 𝛾- factor 
11 = (𝛾, 𝛾𝑉⃗ ) 
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 𝑝 = 𝑚0 (
𝑑𝑡

𝑑𝜏
,
𝑑𝑥

𝑑𝜏
,
𝑑𝑦

𝑑𝜏
,
𝑑𝑧

𝑑𝜏
) = 12

(

 
𝑚0

√1 − (𝑉⃗ )
2
,

𝑚0𝑉𝑥

√1 − (𝑉⃗ )
2
,
𝑚0𝑉𝑦

√1 − (𝑉⃗ )
2
, 0

)

  

 

  = √2𝑚0 (1,
𝑐

2
,
𝑐

2
, 0)  

The particle energy 

 𝐸 = √2𝑚0  

The particle impulse  

 𝑝  = 𝑚0 ( 
𝑐

√2
,
𝑐

√2
, 0) = 𝑚0𝛾𝑉⃗ → 𝑚0𝑉⃗  for small velocities  

3.4 Non-constant velocities 

3.4.1 nParametrizing and four vectors of a free particle with non-constant velocity. 

A particle is moving along the x-axis with three velocity: 𝑉⃗ = (
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
,
𝑑𝑧

𝑑𝑡
) = (

𝑘𝑡

√1+𝑘2𝑡2
, 0, 0). We want to 

know a) the particle world-line expressed parametrically as a function of 𝜏: (𝑡(𝜏), 𝑥(𝜏)), b) the particle 

four-velocity: 𝑢 = (
𝑑𝑡

𝑑𝜏
,
𝑑𝑥

𝑑𝜏
,
𝑑𝑦

𝑑𝜏
,
𝑑𝑧

𝑑𝜏
) = (𝑢𝑡 , 𝑢𝑥 , 0, 0), c) the particle four impulse: 𝑝 = 𝑚0𝑢, d) and the parti-

cle four force: 𝑓 =
𝑑𝑝

𝑑𝜏
= 𝑚0

𝑑𝑢

𝑑𝜏
  

We begin by noticing that 
 

𝑉𝑥 =
𝑘𝑡

√1 + 𝑘2𝑡2
→ 1(= 𝑐) 𝑖𝑓 𝑡 → ∞ 

 

The particle is moving along the x-axis in a space-time described by 
 𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑥2  
 𝑔𝑎𝑏 = 𝜂𝑎𝑏 = {

−1
1
}  

⇒ 𝑑𝜏2 = 13𝑑𝑡2 − 𝑑𝑥2  

The world-line 

 (
𝑑𝜏

𝑑𝑡
)
2

 = 1 − (
𝑑𝑥

𝑑𝑡
)
2

= 1 − (
𝑘𝑡

√1 + 𝑘2𝑡2
)
2

= 1 −
𝑘2𝑡2

1 + 𝑘2𝑡2
=

1

1 + 𝑘2𝑡2
 (3.2.) 

⇒ 𝑑𝜏 =
𝑑𝑡

√1 + 𝑘2𝑡2
 

 

⇒ 𝜏 − 𝜏0 = ∫
𝑑𝑡

√1 + 𝑘2𝑡2
= 14

arcsinh(𝑘𝑡)

𝑘
 

 

⇒ 𝑡(𝜏) = 15
sinh(𝑘𝜏)

𝑘
 

 

 
𝑑𝑥

𝑑𝑡
 =

𝑘𝑡

√1 + 𝑘2𝑡2
 

 

⇒ 𝑑𝑥 =
𝑘𝑡

√1 + 𝑘2𝑡2
𝑑𝑡 

 

⇒ 𝑥 − 𝑥0 = ∫
𝑘𝑡

√1 + 𝑘2𝑡2
𝑑𝑡 = 16

1

𝑘
√1 + 𝑘2𝑡2 

 

                                                           
12 = (𝑚0𝛾,𝑚0𝛾𝑉⃗ ) 
13 Negative time-signature i.e. 𝑑𝜏2 = −𝑑𝑠2. See chapter 2 
14 ∫

𝑑𝑥

√𝑥2+𝑎2
= arcsinh(

𝑥

𝑎
) (Spiegel, 1990) (14.182) 

15 𝑡(0) = 0 ⇒ 𝜏0 = 0 
16 ∫

𝑥𝑑𝑥

√𝑥2+𝑎2
= √𝑥2 + 𝑎2 (Spiegel, 1990) (14.183) 
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⇒ 𝑥(𝜏) = 17
1

𝑘
√1 + 𝑘2𝑡2 −

1

𝑘
 

 

  =
1

𝑘
√1 + 𝑘2 (

sinh(𝑘𝜏)

𝑘
)

2

−
1

𝑘
 

 

  = 18
cosh(𝑘𝜏)

𝑘
−
1

𝑘
 

 

The four-velocity: We use eq. (3.2.) to find the four-velocity 𝑢 = (
𝑑𝑡

𝑑𝜏
,
𝑑𝑥

𝑑𝜏
,
𝑑𝑦

𝑑𝜏
,
𝑑𝑧

𝑑𝜏
) 

 (
𝑑𝜏

𝑑𝑡
)
2

 =
1

1 + 𝑘2𝑡(𝜏)2
 

 

⇒ 
𝑑𝑡

𝑑𝜏
 = √1 + 𝑘2𝑡(𝜏)2 = √1 + 𝑘2 (

sinh(𝑘𝜏)

𝑘
)

2

= cosh(𝑘𝜏) = 𝑢𝑡 

 

 
𝑑𝑥

𝑑𝜏
 =

𝑑𝑥

𝑑𝑡

𝑑𝑡

𝑑𝜏
=

𝑘𝑡

√1 + 𝑘2𝑡2
√1 + 𝑘2𝑡2 = 𝑘𝑡(𝜏) = sinh(𝑘𝜏) = 𝑢𝑥 

 

⇒ 𝑢 = (cosh(𝑘𝜏), sinh(𝑘𝜏))  
oNotice we can rewrite the three-velocity as a function of 𝜏 

 
𝑑𝑥

𝑑𝑡
 =

𝑑𝑥

𝑑𝜏

𝑑𝜏

𝑑𝑡
=
sinh(𝑘𝜏)

cosh(𝑘𝜏)
= tanh(𝑘𝜏) 

 

pThe four-force: 𝑓 = (
𝑑𝑝𝑡

𝑑𝜏
,

𝑑𝑝𝑥

𝑑𝜏
) = 𝑚0 (

𝑑𝑢𝑡

𝑑𝜏
,

𝑑𝑢𝑥

𝑑𝜏
) 

 𝑚0
𝑑𝑢𝑡

𝑑𝜏
 = 𝑚0

𝑑

𝑑𝜏
cosh(𝑘𝜏) = 𝑚0𝑘 sinh(𝑘𝜏) = 𝑓

𝑡 
 

 𝑚0
𝑑𝑢𝑥

𝑑𝜏
 = 𝑚0

𝑑

𝑑𝜏
sinh(𝑘𝜏) = 𝑚0𝑘 cosh(𝑘𝜏) = 𝑓

𝑥 
 

⇒ 𝑓 = (𝑚0𝑘 sinh(𝑘𝜏) ,𝑚0𝑘 cosh(𝑘𝜏))  
Collecting the results: 

The world-line19 

 

𝑡(𝜏) =
sinh(𝑘𝜏)

𝑘
 

𝑥(𝜏) =
cosh(𝑘𝜏)

𝑘
−
1

𝑘
 

The four-velocity20 
𝑢𝑡(𝜏) = cosh(𝑘𝜏) 
𝑢𝑥(𝜏) = sinh(𝑘𝜏) 
The four-impulse 
𝑝𝑡(𝜏) = 𝑚0 cosh(𝑘𝜏) 
𝑝𝑥(𝜏) = 𝑚0 sinh(𝑘𝜏) 
The four-force 
𝑓𝑡(𝜏) = 𝑘𝑚0 sinh(𝑘𝜏) 
𝑓𝑥(𝜏) = 𝑘𝑚0 cosh(𝑘𝜏)  

                                                           
17 𝑥(0) = 0 ⇒ 𝑥0 = −

1

𝑘
 

18 cosh2 𝑥 − sinh2 𝑥 = 1 (Spiegel, 1990) (8.11) 
19 gnuplot> plot sinh(t),cosh(t)-1  k=1"                                                 
20 Checking the conservation of four-velocity: −(𝑢𝑡)2 + (𝑢𝑥)2 = −cosh2(𝑘𝜏) + sinh2(𝑘𝜏) = −1 
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3.4.2 qParametrizing and four vectors of a free particle with constant acceleration. 
A particle is moving along the x-axis with an acceleration, when measured in the particle rest-frame is 

always constant 𝑔 i.e. 𝐹⃗⃗ = (𝑚𝑔,0, 0). We want to know a) the particle world-line expressed parametrically 

as a function of 𝜏: (𝑡(𝜏), 𝑥(𝜏)) and b) the particle four-velocity: 𝑢 = (
𝑑𝑡

𝑑𝜏
,
𝑑𝑥

𝑑𝜏
,
𝑑𝑦

𝑑𝜏
,
𝑑𝑧

𝑑𝜏
) = (𝑢𝑡 , 𝑢𝑥 , 0, 0)  

The particle is moving along the x-axis in a space-time described by 
 𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑥2  
 𝑔𝑎𝑏 = 𝜂𝑎𝑏 = {

−1
1
}  

⇒ 𝑑𝜏2 = 21𝑑𝑡2 − 𝑑𝑥2  

⇒ (
𝑑𝜏

𝑑𝑡
)
2

 = 1 − (
𝑑𝑥

𝑑𝑡
)
2

 
 

The world-line 
From the space-time we know 
 

(
𝑑𝜏

𝑑𝑡
)
2

 = 1 − (
𝑑𝑥

𝑑𝑡
)
2

= 1 − (
𝑑𝜏

𝑑𝑡

𝑑𝑥

𝑑𝜏
)
2

= 1 − (
𝑑𝜏

𝑑𝑡
)
2

(
𝑑𝑥

𝑑𝜏
)
2

  

⇒ 
𝑑𝜏

𝑑𝑡
 
=

1

√1 + (
𝑑𝑥
𝑑𝜏
)
2

 
 

The physical condition  
 𝐹⃗⃗  = (𝑚𝑔, 0, 0)  

The four force  

⇒ 𝑓𝑥 =
𝑑𝑡

𝑑𝜏
𝐹𝑥 =

𝑑𝑡

𝑑𝜏
𝑚𝑔 =

𝑑𝑢𝑥

𝑑𝜏
=
𝑑𝑡

𝑑𝜏

𝑑𝑢𝑥

𝑑𝑡
 

 

⇒ 
𝑑𝑢𝑥

𝑑𝑡
 = 𝑚𝑔 

 

⇒ 
𝑑2𝑥

𝑑𝜏2
 =

𝑑

𝑑𝜏
(
𝑑𝑥

𝑑𝜏
) =

𝑑𝑡

𝑑𝜏

𝑑

𝑑𝑡
(
𝑑𝑥

𝑑𝜏
) =

𝑑𝑡

𝑑𝜏

𝑑𝑢𝑥

𝑑𝑡
=
𝑑𝑡

𝑑𝜏
𝑚𝑔 = 𝑚𝑔√1 + (

𝑑𝑥

𝑑𝜏
)
2

 

 

This we can solve in order to find 𝑢𝑥(𝜏) =
𝑑𝑥

𝑑𝜏
 

⇒ 
𝑑𝑢𝑥

𝑑𝜏
 = 𝑚𝑔√1 + (𝑢𝑥)2 

 

⇒ 𝜏 − 𝜏0 =
1

𝑚𝑔
∫

𝑑(𝑢𝑥)

√1 + (𝑢𝑥)2
=

22 arcsinh(𝑢𝑥(𝜏))

𝑚𝑔
 

 

⇒ 𝑢𝑥(𝜏) = sinh𝑚𝑔(𝜏 − 𝜏0)  

⇒ 
𝑑𝑥

𝑑𝜏
 = 23 sinh(𝑚𝑔𝜏) 

 

⇒ 𝑥 − 𝑥0 = ∫sinh(𝑚𝑔𝜏) 𝑑𝜏 = cosh(𝑚𝑔𝜏) 
 

⇒ 𝑥(𝜏) = 24 cosh(𝑚𝑔𝜏) − 1  

 
𝑑𝜏

𝑑𝑡
 
=

1

√1 + (
𝑑𝑥
𝑑𝜏
)
2
=

1

√1 + (sinh(𝑚𝑔𝜏))2
=

1

cosh(𝑚𝑔𝜏)
 

 

                                                           
21 Negative time-signature i.e. 𝑑𝜏2 = −𝑑𝑠2. See chapter 2 
22 ∫

𝑑𝑥

√𝑥2+𝑎2
= arcsinh

𝑥

𝑎
 (Spiegel, 1990) (14.182) 

23 Assuming that 𝑢𝑥(0) = 0 
24 Assuming that 𝑥(0) = 0 
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⇒ 𝑡 − 𝑡0 = ∫cosh(𝑚𝑔𝜏) 𝑑𝜏 = sinh(𝑚𝑔𝜏) 
 

⇒ 𝑡(𝜏) = 25 sinh(𝑚𝑔𝜏)  

Collecting the results: 
The world-line26 

 

𝑡(𝜏) = sinh(𝑚𝑔𝜏) 
𝑥(𝜏) = cosh(𝑚𝑔𝜏) − 1 

The four-velocity27 
𝑢𝑡(𝜏) = cosh(𝑚𝑔𝜏) 
𝑢𝑥(𝜏) = sinh(𝑚𝑔𝜏) 
The four-force 

𝑓𝑥(𝜏) = 𝑚𝑔 cosh(𝑚𝑔𝜏) 

3.4.3 rCharged particle in a magnetic field. 
A particle with charge 𝑞 and rest mass 𝑚0 is moving in a circular orbit with radius 𝑟 in a uniform magnetic 

field 𝐵⃗  with total energy 𝐸 = √𝑚0
2 + (𝑝 )2 and three-force 𝐹 = 𝑞(𝑉⃗ × 𝐵⃗ ).  We want to find 1) The radius 

of the orbit and 2) The four-force. 

𝑉⃗ , the velocity, is a tangent vector to the circular orbit and B⃗⃗ , the magnetic field is perpendicular to the 
circular orbit and the three-force is radial (pointing inwards). 
The centripetal acceleration is radial(pointing outwards) is given by 
 

𝑎𝑐⃗⃗⃗⃗  = 28
𝑑𝑉⃗ 

𝑑𝑡
=
(𝑉⃗ )

2

𝑟

𝑟 

𝑟
 

 

The three-force:  
 

𝐹  =
𝑑𝑝 

𝑑𝑡
= 𝑚0

𝑑

𝑑𝑡

(

 
𝑚𝑉⃗ 

√1 − (𝑉⃗ )
2

)

 = 𝑚0𝛾
𝑑𝑉⃗ 

𝑑𝑡
= 𝑚0𝛾

(𝑉⃗ )
2

𝑟

𝑟 

𝑟
 

 

The magnetic three-force and the centripetal three-force has the same size. 

 |𝑚0𝛾
(𝑉⃗ )

2

𝑟

𝑟 

𝑟
| = |𝑞(𝑉⃗ × 𝐵⃗ )| 

 

⇒ 𝑚0𝛾
(𝑉⃗ )

2

𝑟
 = 𝑞|𝑉⃗ |𝐵 

 

⇒ 𝑚0𝛾|𝑉⃗ | = 𝑟𝑞𝐵  

⇒ |𝑝 | = 𝑟𝑞𝐵  

⇒ 𝑟 =
|𝑝 |

𝑞𝐵
=
√𝐸2 −𝑚0

2

𝑞𝐵
 

 

The four-force: 

 𝑓𝑡 = 𝛾𝐹 ⋅ 𝑉⃗ = 290  

 |𝑓 | = |
𝑑𝑝 

𝑑𝜏
| = 𝛾|𝐹 | = 𝛾𝑞|𝑉⃗ |𝐵 =

𝑞𝐵

𝑚0
|𝑝 | =

𝑞𝐵

𝑚0
√𝐸2 −𝑚0

2 
 

which is a radial component. 

                                                           
25 Assuming that 𝑡(0) = 0 
26 gnuplot> plot sinh(t),cosh(t)-1 title "t(tau)=sinh(tau),x(tau)=cosh(tau)-1"                                                  
27 Checking the conservation of four-velocity: −(𝑢𝑡)2 + (𝑢𝑥)2 = −cosh2(𝑔𝜏) + sinh2(𝑔𝜏) = −1 
28 In this case |𝑉⃗ |is constant, but the particle is stille accelerated because the direction of 𝑉⃗  constantly is changing tan-
gentially along the circular movement. 
29 Because 𝐹  and 𝑉⃗  are perpendicular 
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Notice: The relativistic factor shows itself in the √𝐸2 −𝑚0
2 component. 

3.5 sObservers 
So far we have only looked at the phenomena itself, but what happens when an observer in a laboratory 
becomes involved. Clearly we have to take into account if the laboratory and the observed phenomena is 
moving with respect to each other. 
The observers laboratory is described by a set of four orthonormal vectors varying with the observers 
proper time: 𝑒0̂, 𝑒1̂, 𝑒2̂ and 𝑒3̂. These four vectors define a time direction 𝑒0̂ and three space or spatial 
directions 𝑒1̂, 𝑒2̂ and 𝑒3̂. It is important to notice that the time-like unit vector equals the observers four-
velocity. 
 𝑒0̂(𝜏) = 𝑢𝑜𝑏𝑠(𝜏)  
And 
 𝑒0̂ ⋅ 𝑒0̂ = −1  
 𝑒1̂ ⋅ 𝑒1̂ = 𝑒2̂ ⋅ 𝑒2̂ = 𝑒3̂ ⋅ 𝑒3̂ = 1  
If a particle with four-impuls 𝑝 is observed in a laboratory as described above, the measured components 

𝑝𝛼̂ along each direction are given by 
 𝑝0̂ = 30 − 𝑝 ⋅ 𝑒0̂ (3.3.) 

 𝑝1̂ = 31𝑝 ⋅ 𝑒1̂  

 𝑝2̂ = 𝑝 ⋅ 𝑒2̂  

 𝑝3̂ = 𝑝 ⋅ 𝑒3̂  

Now because 𝑝0̂ equals the measured energy in the laboratory we can rewrite eq. (3.3.) 
 𝐸𝑜𝑏𝑠 = −𝑝 ⋅ 𝑢𝑜𝑏𝑠  
tWe can also describe – which I prefer - an observers laboratory in coordinate space defined by its space-
time (if the metric is diagonal) 
 𝑑𝑠2 = 𝑔00(𝑑𝑥

0)2 + 𝑔11(𝑑𝑥
1)2 + 𝑔22(𝑑𝑥

2)2 + 𝑔33(𝑑𝑥
3)2  

The basis: 
 (𝑒0̂)

𝛼  = ((−𝑔00)
−
1
2, 0, 0,0) 

 

 (𝑒1̂)
𝛼 = (0, (𝑔11)

−
1
2, 0, 0) 

 

 (𝑒2)
𝛼 = (0, 0, (𝑔22)

−
1
2, 0) 

 

 (𝑒3̂)
𝛼 = (0, 0, 0, (𝑔33)

−
1
2) 

 

Notice: 
 𝑒0̂ ⋅ 𝑒0̂ = (𝑒0̂)𝛼 ⋅ (𝑒0̂)

𝛼 = 𝑔𝛼𝛽(𝑒0̂)
𝛽 ⋅ (𝑒0̂)

𝛼 = 𝑔00(−𝑔00)
−
1
2(−𝑔00)

−
1
2 = −1 

 

 𝑒1̂ ⋅ 𝑒1̂ = (𝑒1̂)𝛼 ⋅ (𝑒1̂)
𝛼 = 𝑔𝛼𝛽(𝑒1̂)

𝛽 ⋅ (𝑒1̂)
𝛼 = 𝑔11(𝑔11)

−
1
2(𝑔11)

−
1
2 = 1 

 

If a particle with four-impuls 𝑝 is observed in a laboratory as described above, the measured components 

𝑝𝛼̂ along each direction are given by 
 𝑝0̂ = 32 − 𝑝 ⋅ 𝑒0̂  

 𝑝1̂ = 33𝑝 ⋅ 𝑒1̂  

 𝑝2̂ = 𝑝 ⋅ 𝑒2̂  

 𝑝3̂ = 𝑝 ⋅ 𝑒3̂  

                                                           
30 The components are defined by: 𝑝 = 𝑝𝛼̂𝑒𝛼̂ ⇒ 𝑝 ⋅ 𝑒0̂ = 𝑝

𝛼̂𝑒𝛼̂ ⋅ 𝑒0̂ = 𝑝
0̂𝑒0̂ ⋅ 𝑒0̂ = −𝑝

0̂ 
31 The components are defined by: 𝑝 = 𝑝𝛼̂𝑒𝛼̂ ⇒ 𝑝 ⋅ 𝑒1̂ = 𝑝

𝛼̂𝑒𝛼̂ ⋅ 𝑒1̂ = 𝑝
1̂𝑒1̂ ⋅ 𝑒1̂ = 𝑝

1̂ 
32 The components are defined by: 𝑝 = 𝑝𝛼̂𝑒𝛼̂ ⇒ 𝑝 ⋅ 𝑒0̂ = 𝑝

𝛼̂𝑒𝛼̂ ⋅ 𝑒0̂ = 𝑝
0̂𝑒0̂ ⋅ 𝑒0̂ = −𝑝

0̂ 
33 The components are defined by: 𝑝 = 𝑝𝛼̂𝑒𝛼̂ ⇒ 𝑝 ⋅ 𝑒1̂ = 𝑝

𝛼̂𝑒𝛼̂ ⋅ 𝑒1̂ = 𝑝
1̂𝑒1̂ ⋅ 𝑒1̂ = 𝑝

1̂ 
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3.5.1 uEnergy of a stationary particle measured by and observer with constant velocity 𝑽⃗⃗  
A stationary particle with rest-mass 𝑚0 has four-momentum 𝑝𝑎 = (𝑚0, 𝑝 ) = (𝑚0, 0) is observed by an 

observer in a laboratory with constant velocity 𝑉⃗ . We want to find the observed energy. 
The space-time is the ordinary Minkowsky space so 
 𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2  
 

𝜂𝑎𝑏 = {

−1
1

1
1

} 

 

The observers four-velocity: 
 𝑢𝑜𝑏𝑠 = (𝛾, 𝛾𝑉⃗ )  

⇒ 𝐸𝑜𝑏𝑠 = −𝑝 ⋅ 𝑢𝑜𝑏𝑠 = −𝑝
𝑎 ⋅ 𝑢𝑜𝑏𝑠,𝑎 = −𝜂𝑎𝑏𝑝

𝑎 ⋅ 𝑢𝑜𝑏𝑠
𝑏 = −𝜂00𝑝

0 ⋅ 𝑢𝑜𝑏𝑠
0 = 𝑚0𝛾  

3.5.2 vParticle with four-momentum 𝒑 
A particle with four-momentum 𝑝 and rest-mass 𝑚 is passing through an observers system with four-ve-
locity 𝑢𝑜𝑏𝑠. Because 𝑝2 = −𝑚2 is an invariant we know that  
 −𝑚2 = 𝑝2 = −𝐸𝑜𝑏𝑠

2 + (𝑝 𝑜𝑏𝑠)
2 = −(−𝑝 ⋅ 𝑢𝑜𝑏𝑠)

2 + (𝑝 𝑜𝑏𝑠)
2  

The measured impulse in the laboratory 

⇒ (𝑝 𝑜𝑏𝑠)
2 = (𝑝 ⋅ 𝑢𝑜𝑏𝑠)

2 + 𝑝2 = (𝑝 ⋅ 𝑢𝑜𝑏𝑠)
2 −𝑚2  

3.5.3 wAn accelerating observer 
Imaging an accelerating observer moving in a frame where34 𝑢𝑜𝑏𝑠

𝛼 = (cosh𝑎𝜏 , sinh𝑎𝜏 , 0, 0) passing by a 

stationary star emitting photons with wave vector 𝑘𝛼 = 35(𝜔∗, 𝜔∗, 0, 0). What is the observed frequency? 
The space-time is the ordinary Minkowsky space so 
 𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2  
 

𝜂𝑎𝑏 = {

−1
1

1
1

} 

 

We have 
 𝐸𝑜𝑏𝑠 = −𝑝 ⋅ 𝑢𝑜𝑏𝑠  
For photons we know that 
 𝐸 = ℏ𝜔  
 𝑝 = ℏ𝑘  

⇒ 𝜔(𝜏) = −𝑘 ⋅ 𝑢𝑜𝑏𝑠 = −𝑘
𝛼𝑢𝑜𝑏𝑠,𝛼 = −𝜂𝛼𝛽𝑘

𝛼𝑢𝑜𝑏𝑠
𝛽
= −𝜂𝑡𝑡𝑘

𝑡𝑢𝑜𝑏𝑠
𝑡 − 𝜂𝑥𝑥𝑘

𝑥𝑢𝑜𝑏𝑠
𝑥   

  = 𝑘𝑡𝑢𝑜𝑏𝑠
𝑡 − 𝑘𝑥𝑢𝑜𝑏𝑠

𝑥 = 𝜔∗(cosh𝑎𝜏 − sinh𝑎𝜏) = 𝜔∗ exp(−𝑎𝜏)  
Notice: 
1) When the observer is moving towards the star 𝜏 < 0 
⇒ 𝜔(𝜏) > 𝜔∗  

The light is blue-shifted 
2) When the observer is moving away from the star 𝜏 > 0 
⇒ 𝜔(𝜏) < 𝜔∗  

The light is red-shifted 
xNotice: The orthonormal basis describing the laboratory:  
 𝑒0̂

𝛼 = 𝑢𝑜𝑏𝑠
𝛼 = (cosh(𝑎𝜏) , sinh(𝑎𝜏) , 0, 0)  

 𝑒1̂
𝛼 = (sinh(𝑎𝜏) , cosh(𝑎𝜏) , 0, 0)  

 𝑒2̂
𝛼 = (0, 0, 1, 0)  

                                                           
34 This is the frame for a constant acceleration particle – see former examples. 
35 Notice: 𝑘2 = 𝑘𝛼𝑘𝛼 = 𝜂𝛼𝛽𝑘

𝛼𝑘𝛽 = −(𝑘𝑡)2 + (𝑘𝑥)2 = −𝜔∗
2 + 𝜔∗

2 = 0 (photon) 
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 𝑒3̂
𝛼 = (0, 0, 0, 1)  

The measured components of the wave-vector 𝑘𝛼 = (𝜔∗, 𝜔∗, 0, 0) along each direction are given by 
 𝑘0̂ = −𝑘 ⋅ 𝑒0̂ = −𝑘

𝛼 ⋅ 𝑒0̂,𝛼 = −𝜂𝛼𝛽𝑘
𝛼 ⋅ 𝑒

0̂
𝛽
= −(−𝑘𝑡 ⋅ 𝑒0̂

𝑡 + 𝑘𝑥 ⋅ 𝑒0̂
𝑥)  

  = 𝜔∗(cosh(𝑎𝜏) − sinh(𝑎𝜏))  
 𝑘1̂ = 𝑘 ⋅ 𝑒1̂ = 𝑘

𝛼 ⋅ 𝑒1̂,𝛼 = 𝜂𝛼𝛽𝑘
𝛼 ⋅ 𝑒

1̂
𝛽
= −𝑘𝑡 ⋅ 𝑒1̂

𝑡 + 𝑘𝑥 ⋅ 𝑒1̂
𝑥  

  = 𝜔∗(− sinh(𝑎𝜏) + cosh(𝑎𝜏))  
 𝑘2̂ = 𝑘 ⋅ 𝑒2̂ = 0  

 𝑘3̂ = 𝑘 ⋅ 𝑒3̂ = 0  

⇒ 𝑘𝛼̂ = 36(𝜔∗(cosh(𝑎𝜏) − sinh(𝑎𝜏)), 𝜔∗(− sinh(𝑎𝜏) + cosh(𝑎𝜏)), 0, 0)   

3.5.4 yThe four-velocity of an observer in a two-dimensional flat space-time moving – Rindler Space-time 
Consider the two-dimensional space-time37 
 𝑑𝑠2 = −𝑋2𝑑𝑇2 + 𝑑𝑋2  
 𝑔𝑎𝑏 = {−𝑋

2

1
}  

⇒ 𝑑𝜏2 = 38𝑋2𝑑𝑇2 − 𝑑𝑋2  

An observer moves on a curve – this is the observers world-line 
 𝑋 = 2𝑇 𝑓𝑜𝑟 𝑇 > 1  
The four-velocity (or rather two-velocity) of the observer is: 
 

𝑢 = (𝑢𝑇 , 𝑢𝑋) = (
𝑑𝑇

𝑑𝜏
,
𝑑𝑋

𝑑𝜏
) 

 

Manipulating the metric we get 
 

(
𝑑𝜏

𝑑𝑇
)
2

 = 𝑋2 − (
𝑑𝑋

𝑑𝑇
)
2

= (2𝑇)2 − (
𝑑(2𝑇)

𝑑𝑇
)

2

= 4(𝑇2 − 1) 
 

⇒ 
𝑑𝜏

𝑑𝑇
 = 2√𝑇2 − 1 𝑇2 − 1 > 0 

⇒ 
𝑑𝑇

𝑑𝜏
 =

1

2√𝑇2 − 1
 

 

⇒ 
𝑑𝑋

𝑑𝜏
 
=
𝑑𝑇

𝑑𝜏

𝑑𝑋

𝑑𝑇
=

1

2√𝑇2 − 1

𝑑(2𝑇)

𝑑𝑇
=

1

√𝑇2 − 1
=

1

√(
1
2𝑋)

2

− 1

 
 

⇒ 𝑢 = (
1

2√𝑇2 − 1
,

1

√𝑇2 − 1
) =

(

 
1

2√𝑇2 − 1
,

1

√(
1
2
𝑋)

2

− 1)

  

 

Is the curve 𝑋 = 2𝑇 of the observer time-like or space-like: 
Manipulating the metric we get 

 𝑑𝑠2 = (−𝑋2 + (
𝑑𝑋

𝑑𝑇
)
2

)𝑑𝑇2 = −((2𝑇)2 − (
𝑑(2𝑇)

𝑑𝑇
)

2

)𝑑𝑇2 = −4(𝑇2 − 1)𝑑𝑇2 
 

  < 0  
Which means the curve is timelike. 
Another possibility is to look at the square of the four-velocity 

                                                           
36 Notice: 𝑘2 = 𝑘𝛼̂𝑘𝛼̂ = 𝜂𝛼𝛽𝑘

𝛼̂𝑘𝛽̂ = −(𝑘𝑡̂)
2
+ (𝑘𝑥)

2
= −𝜔∗

2[(cosh(𝑎𝜏) − sinh(𝑎𝜏))2 − (− sinh(𝑎𝜏) +

cosh(𝑎𝜏))2 = −𝜔∗
2[cosh2(𝑎𝜏) + sinh2(𝑎𝜏) − 2 cosh(𝑎𝜏) sinh(𝑎𝜏) − sinh2(𝑎𝜏) − cosh2(𝑎𝜏) +

2 sinh(𝑎𝜏) cosh(𝑎𝜏) = 0 (photon) 
37 This is actually the Rindler metric, which we look at in a later chapter. 
38 Negative time-signature i.e. 𝑑𝜏2 = −𝑑𝑠2. See chapter 2 
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 𝑢 ⋅ 𝑢 = 𝑢𝑇𝑢
𝑇 + 𝑢𝑋𝑢

𝑋 = 𝑔𝑇𝑇(𝑢
𝑇)2 + 𝑔𝑋𝑋(𝑢

𝑋)2  

  = −𝑋2 (
1

2√𝑇2 − 1
)
2

+ (
1

√𝑇2 − 1
)
2

= −(2𝑇)2
1

4(𝑇2 − 1)
+

1

(𝑇2 − 1)
 

 

  = (−𝑇2 + 1)
1

(𝑇2 − 1)
= −1 

 

i.e. the curve is timelike. 
Collecting the results: 

The world-line39 

 

𝑋(𝜏) = 2𝑇(𝜏) 
The four-velocity 

𝑢𝑡(𝑇) =
1

2√𝑇2 − 1
 

𝑢𝑥(𝑇) =
1

√𝑇2 − 1
 

3.5.5 zObserved particle outside a Spherical Symmetric star 
An astronaut stationed in a laboratory outside a spherical symmetric star is measuring radially outwards 
moving protons produced by the star. One particular proton is measured to have the energy 𝐸 and mo-

mentum 𝑃⃗ . The mass of the star is 𝑀 and the laboratory is hovering at a fixed distance 𝑅. We want to find 

the components of the of the energy-momentum vector (𝑝𝑡 , 𝑝𝑟⃗⃗⃗⃗ ) in the Schwarzschild space-time of the 

proton expressed by the measured values. 
The Schwarzschild space-time  
 

𝑑𝑠2 = −(1 −
2𝑀

𝑟
)𝑑𝑡2 + (1 −

2𝑀

𝑟
)
−1

𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜙2) 
 

The coordinate basis describing the laboratory 
 

(𝑒𝑡̂)
𝛼  = ((1 −

2𝑀

𝑟
)
−
1
2
, 0, 0,0) 

 

 

(𝑒1̂)
𝛼 = (0, (1 −

2𝑀

𝑟
)

1
2
, 0, 0) 

 

 
(𝑒2)

𝛼 = (0, 0,
1

𝑟
, 0) 

 

 
(𝑒3̂)

𝛼 = (0, 0, 0,
1

𝑟 sin 𝜃
) 

 

The observed properties 
 

𝐸𝑜𝑏𝑠 = −𝑝 ⋅ 𝑒𝑡̂ = −𝑝𝛼 ⋅ (𝑒𝑡̂)
𝛼 = −𝑔𝛼𝛽𝑝

𝛽 ⋅ (𝑒𝑡̂)
𝛼 = −𝑔𝑡𝑡𝑝

𝑡 (1 −
2𝑀

𝑟
)
−
1
2
 

 

 
 = 𝑝𝑡 (1 −

2𝑀

𝑟
)

1
2

 

 

 
|𝑃⃗ | = 𝑝 ⋅ 𝑒𝑟̂ = 𝑝𝛼 ⋅ (𝑒𝑟)

𝛼 = 𝑔𝛼𝛽𝑝
𝛽 ⋅ (𝑒𝑟̂)

𝛼 = 𝑔𝑟𝑟𝑝
𝑟 (1 −

2𝑀

𝑟
)

1
2
= 𝑝𝑟 (1 −

2𝑀

𝑟
)
−
1
2

 

 

⇒ 𝑝𝑡 = 𝐸𝑜𝑏𝑠 (1 −
2𝑀

𝑟
)
−
1
2

 

 

                                                           
39 plot t,2*t                                                   
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𝑝𝑟 = |𝑃⃗ | (1 −

2𝑀

𝑟
)

1
2

 

 

3.5.6 æThe four force outside a black hole 
The four-force outside a black hole on a spacecraft with mass 𝑚 
 

𝑓𝛼 = 𝑚(
𝑑2𝑥𝛼

𝑑𝜏2
+ Γ   𝛽𝛾

𝛼 𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛾

𝑑𝜏
) 

 

We want to find the four-force observed by a stationary hovering spacecraft (𝑖. 𝑒. 𝑑𝑟 = 𝑑𝜃 = 𝑑𝜙 = 0). 
The four-force in the radial direction: 
 

𝑓𝑟 = 𝑚(
𝑑2𝑟

𝑑𝜏2
+ Γ   𝛽𝛾

𝑟 𝑑𝑥𝛽

𝑑𝜏

𝑑𝑥𝛾

𝑑𝜏
) 

 

 
 = 𝑚(

𝑑2𝑟

𝑑𝜏2
+ Γ   𝑡𝑡

𝑟 (
𝑑𝑡

𝑑𝜏
)
2

+ Γ   𝑟𝑟
𝑟 (

𝑑𝑟

𝑑𝜏
)
2

+ Γ   𝜃𝜃
𝑟 (

𝑑𝜃

𝑑𝜏
)
2

+ Γ   𝜙𝜙
𝑟 (

𝑑𝜙

𝑑𝜏
)
2

) = 40𝑚Γ   𝑡𝑡
𝑟 (𝑢𝑡)2 

 

 
 = 𝑚(

𝑀

𝑟2
) (1 −

2𝑀

𝑟
) (1 −

2𝑀

𝑟
)
−1

= 𝑚(
𝑀

𝑟2
) 

 

The four-force observed in the spacecraft: 
 
𝑓𝑜𝑏𝑠
𝑟̂  = 𝑓 ⋅ 𝑒𝑟̂ = 𝑓𝛼 ⋅ (𝑒𝑟̂)

𝛼 = −𝑔𝛼𝛽𝑓
𝛽 ⋅ (𝑒𝑟̂)

𝛼 = 𝑔𝑟𝑟𝑓
𝑟(𝑒𝑟̂)

𝑟 = (1 −
2𝑀

𝑟
)
−1

𝑚(
𝑀

𝑟2
) (1 −

2𝑀

𝑟
)

1
2

 

 

  

= 𝑚(
𝑀

𝑟2
) (1 −

2𝑀

𝑟
)
−
1
2
 

 

3.5.7 ø41Can an astronaut escape a black hole? 
Imagine an astronaut stuck outside a black hole wants to go home. He has brought some kind of energy 
device and wants to know the escape velocity needed in order to reach his home far away, slowly decel-
erating arriving with zero velocity. The astronaut, mass 𝑚, is at rest in the distance 𝑅 from the center of 
the black hole, mass M. 
We treat the problem as an observer problem. The route back home is a radial geodesic as we found above 

where 
𝑑𝑡

𝑑𝜏
=

1

1−
2𝑀

𝑟

 and 42the energy the astronaut needs to escape and fly home is 𝐸𝑒𝑠𝑐𝑎𝑝𝑒 = 𝑚𝛾 =

𝑚
1

√1−𝑉𝑒𝑠𝑐𝑎𝑝𝑒
2

 which corresponds to the observed energy, 𝐸𝑜𝑏𝑠. 

The observer equation: 
 𝑝0̂ = 𝐸𝑜𝑏𝑠 = −𝑝𝑒𝑠𝑐𝑎𝑝𝑒 ⋅ 𝑒𝑡̂ = −(𝑝𝑒𝑠𝑐𝑎𝑝𝑒)𝛼 ⋅ (𝑒𝑡̂)

𝛼  

 
 = −𝑔𝛼𝛽(𝑝𝑒𝑠𝑐𝑎𝑝𝑒)

𝛽 ⋅ (𝑒𝑡̂)
𝛼 = 43 − 𝑔𝑡𝑡(𝑝𝑒𝑠𝑐𝑎𝑝𝑒)

𝑡 (1 −
2𝑀

𝑟
)
−
1
2

 

 

                                                           

40 In the following chapters we will find: Γ   𝑡𝑡
𝑟 = 1 −

2𝑀

𝑟
, 𝑢𝑡 = (1 −

2𝑀

𝑟
)
−1/2

 
41 I have presented this example in another chapter (chapter 12) too because I think it is a good example concerning 
the observer problem as well as a black hole problem. 
42 The situation is equivalent to a particle with four-impulse 𝑝 = (𝑀, 𝑉𝑜⃗⃗  ⃗) passing a stationary observer with four veloc-

ity 𝑢𝑜 = (
𝑑𝑡

𝑑𝜏
,
𝑑𝑟

𝑑𝜏
,
𝑑𝜃

𝑑𝜏
,
𝑑𝜙

𝑑𝜏
) . The particle in this case has the energy 𝐸 = −𝑝 ⋅ 𝑢𝑜.  The escape energy has the opposite 

sign. (Hartle, 2003, s. 98) 

43 Recall: (𝑒𝑡̂)
𝛼 = ((1 −

2𝑀

𝑟
)
−
1

2
, 0, 0,0) 
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 = 44 − 𝑔𝑡𝑡𝑚

𝑑𝑡

𝑑𝜏
(1 −

2𝑀

𝑟
)
−
1
2

 

 

 

 = 45 (1 −
2𝑀

𝑟
)𝑚(

1

1 −
2𝑀
𝑟

)(1 −
2𝑀

𝑟
)
−
1
2
= 𝑚(1 −

2𝑀

𝑟
)
−
1
2

 

 

⇒ 
𝑚

1

√1 − 𝑉𝑒𝑠𝑐𝑎𝑝𝑒
2  

 
= 𝑚(1 −

2𝑀

𝑟
)
−
1
2

 

 

⇒ 𝑉𝑒𝑠𝑐𝑎𝑝𝑒 = √
2𝑀

𝑅
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b (Hartle, 2003, s. 99)  
c (McMahon, 2006, s. 324) 
d (Hartle, 2003, s. 99)  
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f (Hartle, 2003, s. 82) 
g (Hartle, 2003, s. 100) 
h (Hartle, 2003, s. 85) 
i (Hartle, 2003, s. 87) 
j (McMahon, 2006, s. 324), (Hartle, 2003, s. 86) 
k (Hartle, 2003, s. 88) 
l (Hartle, 2003, s. 100) 
m (Hartle, 2003, s. 100) 
n (Hartle, 2003, s. 100) 
o (Hartle, 2003, s. 85) 
p (Hartle, 2003, s. 86) 
q (Hartle, 2003, s. 100) 
r (Hartle, 2003, s. 88) 
s (Hartle, 2003, s. 95) 
t (Hartle, 2003, s. 156) 
u (Hartle, 2003, s. 98) 
v (Hartle, 2003, s. 102) 
w (Hartle, 2003, s. 99) 
x (Hartle, 2003, s. 102) 
y (McMahon, 2006, s. 84), (Hartle, 2003, s. 143, 165, 184), (Kay, 1988, s. 126) 
z (Hartle, 2003, s. 215) 
æ (Hartle, 2003, s. 261, 278) 
ø (Hartle, 2003, s. 277) 

                                                           
44 Recall: 𝑝𝑡 = 𝑚𝑎𝑠𝑡𝑟𝑜𝑛𝑎𝑢𝑡

𝑑𝑡

𝑑𝜏
 

45 Recall: 𝑔𝑡𝑡 = −(1 −
2𝑀

𝑟
) 
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